
Compound Schema Registry (Extended Abstract)
Silvery D. Fu1,2, Xuewei Chen1
1UC Berkeley, 2Systems Design Studio

Abstract
Schema evolution is the process of modifying a database system’s
schema to maintain compatibility with existing data [1–3, 6]. It al-
lows data producers to update schemas while ensuring they remain
compatible with the ones used by downstream consumers. For ex-
ample, a producer might add a new timestamp field that does not
disrupt existing consumers unprepared for this change.

A schema registry [4, 9] is a common approach aiming to address
the challenges of schema evolution, especially for real-time data
streaming. It serves as a centralized repository to store, manage,
validate, and ensure the compatibility of schemas. The registry fa-
cilitates communication between producers and consumers through
a well-defined data contract encapsulated within a schema. It con-
trols schema evolution through clear and explicit compatibility rules,
ensuring that all participants adhere to established standards. The
registry optimizes data transmission by using schema IDs instead of
full schema definitions. At runtime, the schema registry dynamically
resolves these IDs to their corresponding schemas, enabling systems
to correctly interpret incoming data streams and integrate schema
changes without interruptions.

However, existing schema registries can typically manage only
simple modifications to schemas, such as adding or removing fields.
More complex syntactic alterations, such as renaming fields, chang-
ing data types, or modifying units and scaling, are generally con-
sidered breaking changes. These changes can lead to application
downtime, requiring a human in the loop to write schema matching
and mapping code at the application level to restore compatibility
and carefully manage the migration. For instance, in a Kafka ecosys-
tem that includes a data consumer, producer, and schema registry [4],
developers responsible for the consumer application must be noti-
fied to update their code before the producer makes any changes to
field names or types. Such coordination is crucial to ensure that the
consumer continues to receive data correctly. This process can be te-
dious and often prevents scenarios such as zero-downtime upgrades;
it also limits the ability of applications to access real-time data from
data sources with previously unknown or changing schemas.

To this end, we propose generalizing schema evolution to accom-
modate a broader range of schema syntax changes. With generalized
schema evolution (GSE), as long as the semantics of two fields or
schemas remain equivalent or compatible—as determined by the
data consumer—data streams will continue uninterrupted when the
data producer evolves the schema. We argue that to realize GSE, the
schema registry should transform into a compound AI system [11].
Our insight is that Large Language Models (LLMs), with their capa-
bility to understand data semantics, can significantly improve how
schema changes are managed and streamline the schema mapping
between different schema versions. For example, consider two ver-
sions of motion sensor schemas illustrated in Fig. 2. Our approach
would enable the automatic mapping of data from version v2 to
version v1, allowing data consumers operating under the v1 schema
to continue accessing data produced under v2.

We present a design and a prototype for compound schema reg-
istry to support GSE, which aims to address three key requirements:
(1) Accurate: The mappings across schema versions must be pre-
cise, ensuring correct generation and application of transformations

1 kind: "Motion sensor"
2 name: "v1"
3 description: "Philips Hue"
4 fields:
5 - name: "motion"
6 type: "boolean"
7 description: >
8 True if motion
9 is detected.

10 required: true
11
12 - name: "enabled"
13 type: "boolean"
14 description: >
15 True when the sensor
16 is activated, false
17 when deactivated.
18 required: true
19
20 - name: "sensitivity"
21 type: "integer"
22 description: >
23 Motion sensitivity
24 default: 2
25 min: 0
26 max: 4

1 kind: "Motion sensor"
2 version: "v2"
3 description: "Vivint"
4 fields:
5 - name: "triggered"
6 type: "boolean"
7 description: >
8 Indicates whether the
9 sensor has been

10 triggered.
11 required: true
12
13 - name: "enabled"
14 type: "boolean"
15 description: >
16 Indicates whether the
17 motion sensor is enabled
18 (True) or bypassed (False).
19 required: true
20
21 - name: "battery_percentage"
22 type: "integer"
23 description: >
24 Measures the current battery
25 level of the motion sensor.
26 required: true

Figure 1: Example schemas for motion sensor data (v1 and v2).

to fields and values within the schema to the data records. (2) Fast
and efficient: Rather than using LLMs to directly translate each data
record—a process that can be inefficient and slow due to frequent
model calls—we should generate schema mappings with LLMs and
translate them into dataflow operations implemented on the data
path (e.g., at the data consumer, within the message broker, or inte-
grated into the data pipeline). This approach of generating off-path
code for on-path execution not only ensures high accuracy but also
improves efficiency. (3) Transparent: The mapping process and
its outputs should be straightforward and easily verifiable for cor-
rectness, avoiding opaque operations (e.g., hidden within a single
model call). Moreover, we advocate for creating an intermediate
representation for schema mappings that are independent of specific
dataflow languages. This approach simplifies the generation pro-
cess by avoiding any unnecessary intricacies of individual language
syntax, while enabling the reuse of mappings across different data
processing engines and platforms.

To meet these requirements, instead of directly generating the
dataflow operators from the given source and target schemas, we pro-
pose a task-specific language for schema mapping called Schema
Transformation Language (STL). The language defines a collection
of schema mapping commands, as detailed in Table 1. These include
(i) schema matching commands for assessing compatibility between
schemas, (ii) field transformation commands for directly modify-
ing schema fields such as adding, deleting, or renaming them, and
(iii) value transformation commands for converting field values to
comply with new schema specifications. Each command handles a
specific sub-task of schema mapping. At runtime, the schema reg-
istry uses STL as part of the prompt to invoke an LLM, where each
command is defined as a function, e.g., using the OpenAI function
calling interface in our prototype, along with the two versions of the
schemas to be mapped. The LLM then generates schema mappings
as STL commands, as depicted in Fig. 2. Subsequently, an assem-
bler translates these STL commands into the corresponding dataflow
operations using the dataflow language of the target platform, which
can then be patched or installed on the data pipeline.



Command class Command name Description

Schema matching MATCH
Used to determine whether the source and target schemas correspond to the same entity;
if they match, the schema mapping will continue; otherwise, it will abort.

Field transformation

COPY Directly copies data from the source field to the target field without any transformation.
ADD Inserts a new field into the target schema that does not exist in the source schema.
CAST Converts the data type of the source field to match the expected type of the target field.
DELETE Removes the field from the source schema when it is not required in the target schema.
RENAME Changes the name of the source field to match the name of the target schema.
DEFAULT Assigns a predefined default value to a target field when data is unavailable or null.

MISSING
Used when no appropriate mapping exists to map the source field to a target field,
implying a schema mapping failure.

Value transformation

SCALE Adjusts the numerical values in the source field by a specified factor for the target field.
SHIFT Modifies the values in the source field by adding or subtracting a constant value.

LINK
Establishes a correspondence between values in the source field and defined values in
the target field, used for fields with enum type.

GEN
Generates a transformation function that defines how to convert values from the source
field to fit the target field’s requirements.

APPLY
Applies a transformation function, either generated or predefined by the developer, to
the value of a source field to derive the value of the target field.

Table 1: Key commands in Schema Transformation Language (STL) of the compound schema registry.

{from: triggered, to: motion, transformation: RENAME triggered TO motion}
{from: battery_percentage, to: None, transformation: DELETE battery_percentage}
{from: None, to: sensitivity, transformation: ADD sensitivity TYPE integer}
{from: sensitivity, to: sensitivity, transformation: DEFAULT sensitivity TO 2}
{from: enabled, to: enabled, transformation: COPY}

Figure 2: Generated mappings for motion sensor schema v1 and v2.

Source
schema

Target
schema

Precision Recall F1
STL Base STL Base STL Base

Philips Hue Vivint 0.91 0.73 0.98 0.83 0.94 0.78
SimpliSafe Vivint 1 0.2 0.8 0.2 0.89 0.2
SimpliSafe Philips Hue 1 0.8 0.9 0.67 0.95 0.72

Table 2: Accuracy of evolving schema with STL and direct model call.

Our initial results suggest promising improvements in schema
mapping accuracy with STL compared to generating dataflow opera-
tors directly using an LLM. For example, when applied to real-world
IoT device schemas and schema evolution scenarios, the STL ap-
proach can significantly improve the average F1 score—measured
based on the precision and recall of generating the correct map-
pings—from 78% to 94% across runs for the example schemas, as
shown in Table 2. This is because STL: (1) breaks down the schema
mapping task into smaller, specific sub-tasks (e.g., field transfor-
mations to value transformations for each field), and (2) separates
mapping generation from dataflow generation so that each step can
be performed more easily. With better per-STL-command prompt
engineering, this approach could achieve even higher mapping accu-
racy. Further, we found that the quality of schema definitions (e.g.,
how concise each field explanation is) plays an important role in
mapping accuracy. We assume the schema definitions are given or
can be extracted automatically in a separate process [10], which
itself can also be performed through a compound AI approach. An
interesting question is how we can co-design the schema extraction,
mapping, and evolution processes.

We are extending the prototype to handle schema evolution across
different target platforms and evaluating it using various datasets [7,
8], while comparing it with prior approaches [5, 6, 12]. Our codebase
will be made available at https://llmint.org.
Design Pattern: Task-Specific Language / IR. We propose ex-
tending the discussed design pattern beyond schema evolution by

employing LLMs to generate messages in a task-specific language
for broader applications. Within this framework, each command is
clearly defined to handle a specific sub-task, with predefined tem-
plates for inputs and outputs. Such unambiguous and modular task
specification can also make the output verifiable and task execution
debuggable. This approach can deliver more general and reliable
LLM-based automation across various domains, such as workflow
automation, data automation, and decision support systems.

References
[1] 2024. Diving Into Delta Lake: Schema Enforcement & Evolution.

https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-
enforcement-evolution.html.

[2] 2024. Hudi Schema Evolution. https://hudi.apache.org/docs/schema_evolution/.
[3] 2024. Schema Evolution in Confluent. https://developer.confluent.io/patterns/

event-stream/schema-evolution.
[4] 2024. Schema Registry. https://docs.confluent.io/platform/current/schema-

registry/index.html.
[5] Zui Chen et al. 2023. Seed: Domain-specific data curation with large language

models. arXiv e-prints (2023), arXiv–2310.
[6] Carlo Curino, Hyun Jin Moon, Alin Deutsch, and Carlo Zaniolo. 2013. Automat-

ing the database schema evolution process. The VLDB Journal 22 (2013).
[7] Michael De Jong, Arie van Deursen, and Anthony Cleve. 2017. Zero-downtime

SQL database schema evolution for continuous deployment. In 2017 IEEE/ACM
39th International Conference on Software Engineering: Software Engineering in
Practice Track (ICSE-SEIP). IEEE, 143–152.

[8] Mark Lukas Möller, Meike Klettke, and Uta Störl. 2020. EvoBench–a framework
for benchmarking schema evolution in NoSQL. In 2020 IEEE International
Conference on Big Data (Big Data). IEEE, 1974–1984.

[9] Rahul Sharma, Mohammad Atyab, Rahul Sharma, and Mohammad Atyab. 2022.
Schema Registry. Cloud-Native Microservices with Apache Pulsar: Build Dis-
tributed Messaging Microservices (2022), 81–101.

[10] Michael Stonebraker et al. 2013. Data curation at scale: the data tamer system..
In CIDR, Vol. 2013.

[11] Matei Zaharia et al. 2024. The Shift from Models to Compound AI Systems.
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/.

[12] Yunjia Zhang et al. 2023. Schema matching using pre-trained language models.
In Proc. IEEE ICDE.

2

https://llmint.org
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://www.databricks.com/blog/2019/09/24/diving-into-delta-lake-schema-enforcement-evolution.html
https://hudi.apache.org/docs/schema_evolution/
https://developer.confluent.io/patterns/event-stream/schema-evolution
https://developer.confluent.io/patterns/event-stream/schema-evolution
https://docs.confluent.io/platform/current/schema-registry/index.html
https://docs.confluent.io/platform/current/schema-registry/index.html
https://bair.berkeley.edu/blog/2024/02/18/compound-ai-systems/

	Abstract
	References

