Toward Data-Centric Service Composition

Silvery D. Fu, Hong Zhang, Ryan Teoh, Taras Priadka, Sylvia Ratnasamy
Systems Design Studio LLC, UC Berkeley, University of Waterloo

Today we compose services via APIs

» A service is made of its app logic and APIs

- To compose two services:

» Expose the API at the callee service

» Invoke the API at the caller service

» Examples: RPC, REST, Pub/Sub

Today we compose services via APIs

- Consider an online retail application:

>

>

- C
=5

Checkout, Shipping, Payment, .. services
Shipping exposes a /ship AP|

neckout requests /ship with order info

nipping responds with confirmation

Observation

API-centric composition makes services
difficult to maintain and evolve.

API-Centric Composition

o m o - - e - = = - =

. \
business

|
I

1 .
i 1
-g : /ap@ - I
() 1
ol I

3 1

I 1
! ;

\ service

—— - - - -

() ™)

Checkout Shipping

API-Centric Composition

o m o - - e - = = - =

- Developers must embed pusiness

T g st logic i
message schemas, code 5 :
: ~.comp. :

stubs, and routines for . serice logic
requests, responses, and

error handling directly in <3 > /S“‘p@

the service code. o Shipping

API-Centric Composition

o m o - - e - = = - =

* Problem 1: service development 7 business
., - g : /api logic :

and composition are coupled. 51 < |

i :\ service\clggqiz. :

» Composition changes must G /

be made in the service.

. . /ship
» Service rebuild and redeployment 3 ¢ @
— interruptions and slow TTM. o —ox —

g 4

API-Centric Composition

* Problem 2: composition logic is scattered.

s 3

Checkout Shipping

g 5

API-Centric Composition

* Problem 2: composition logic is scattered.

» Composition logic spreads across
multiple services; changes involve
extensive team coordination.

/submit

» Modern applications, such as
Netflix and Uber, may contain A——
100s/1,000s services.

Shipping

/ship.v2

API-Centric Composition

* Problem 3: data exchanges are hidden.

Payment

{addr, item}
{shipment_id}

Checkout Shipping

API-Centric Composition

* Problem 3: data exchanges are hidden.

» Data exchanges are hidden within API
Invocations between service pairs.

Payment
» Lack of visibility hinders runtime

monitoring, reconfiguration, and @

Optlmlzathﬂ Checkout Shipping

API-Centric Composition

Hard to maintain and evolve service composition:
- Development and composition are coupled.
- Composition logic is scattered.

- Data exchanges are hidden.

Rethinking Service Composition

Data-centric composition with two key principles:

» Principle 1: Decouple service composition from
service development.

» Principle 2: Make data exchanges explicit.

Data-Centric Composition

-+ Each service stores its composition-related states in a

data store and reacts to updates.

- An integrator synchronizes states across data stores

based on given data exchange graphs (DXGs).

)

Checkout Shipping

Data-Centric Composition

Each service stores its composition-related states in a

data store and reacts to updates.

- An integrator synchronizes states across data stores

based on given data exchange graphs (DXGs).

Integrator
)
@_D K/\)

Checkout Shipping

Data-Centric Composition

Kubernetes-native actor

- We refer to this as the Knactor pattern:
» Decoupled: services interact only with their own data store.
» Consolidated: composition logic resides in the integrator.

» Visible: data exchanges are explicit at the integrator.

Integrator

OF= S0

Checkout Shipping

Example: Online Retail Web App

- A web-based e-commerce app where users browse
items, add to cart, and make purchases.

https://github.com/GoogleCloudPlatform/microservices-demo/

-+ Contains 11 microservices, including Checkout,
Shipping, and Payment composed with APIs (gRPC).

- Reproduce this application using Knactor.

10

Knactor: Schema and Business Logic

Business logic (Python) Data store schema (YAML)

@kr.on.update("OnlineRetail”, "checkouts", "order") schema: OnlineRetail/checkout/order

def order_cost(states, name, xx_):

shipping_cost = kr.get(states, "shippingCost") or

"currencyCode": "USD",
Sunitst:=a0);
"nanos": 0,

}
cart_items = kr.get(states, "items", [1)
for item in cart_items:
item_cost = money.multiply slow(item["price"]
, item["quantity"])
cart_cost = money.sum(cart_cost, item_cost)

total_cost = money.sum(cart_cost, shipping_cost)

new_spec = {

"states": {
"totalCost": total_cost,
"currency": "USD",

}

}

kr.patch("OnlineRetail", "checkouts", n=name,
spec=new_spec)

items: object

address: string

cost: number

shippingCost: number # +kr: external
totalCost: number

currency: string

paymentID: string # +kr: external
trackingID: string # +kr: external

Checkout

11

Knactor: Data Exchange

Integrator (YAML)
Input:
C: OnlineRetail/checkout r;>ﬁ
S: OnlineRetail/shipping
P: OnlineRetail/payment

Checkout Shipping
) (CK
C.order:
shippingCost: >
currency_convert(
S.quote.price,
S.quote.currency,
this.currency) Payment
paymentID: P.id S:
trackingID: S.id items: '[item.name for item in C.order.items]’
P: addr: C.order.address
amount: C.order.totalCost method: >

currency: C.order.currency "air" if C.order.cost > 1000 else "ground" 12

Comparing API vs. Knactor

Three implementation tasks:

1. Compose new Payment and Shipping

services with the C

2. Add a shipment po
order price.

neckout service.

icy based on the

Update the Shipping schema.

13

Online Retail: API vs. Knactor

App Task Operation # File SLOC
API N\ API N\ API N\
Online 1 c, fb,d f 8 1 109 7
Retail 2 c, fb,d f 2 1 14 1
3 c f,b,d f 4 1 93 7

Operation: APIs require code changes (c), configuration updates
(f), rebuilds (b), and redeployments (d), whereas Knactor (due to
decoupling) requires only integrator configuration updates.

14

Online Retail: API vs. Knactor

App Task Operation # File SLOC
- API KN API KN API KN
Online 1 c, fb,d f 8 1 109 7
Retail i c fb,d f 2 1 14 1
3 c, fb,d f 4 1 93 7

Number of files changed: Knactor consolidates composition

logic, allowing modifications in a single location (integrator

DXG configuration file) instead of across multiple files in
separate service codebases as with APIs.

14

Online Retail: API vs. Knactor

App Task Operation # File SLOC
API)\ API KN API KN
Online 1 c, fb,d f 8 1 109 7
Retail i c fb,d f 2 1 14 1
3 c, fb,d f 4 1 93 7

SLOC for Composition Logic: Knactor simplifles composition
through declarative data exchanges. Unlike APIs, which require
handling schemas, stubs, and complex API sequences, Knactor
captures operations more concisely in DXGs. 14

IELCEVYEVE

- API-centric composition couples development
and composition, scatters composition logic,
and hides data exchanges.

- To simplity maintenance and evolution, services
should be composed over data, not APIs.

15

Check Out the Paper:

» Framework support for DXG programming.
+ Performance implications and optimizations.

+ State management and access control.

Reach Out: team@sd.studio

16

Backup

State Retention and Access Control

-+ Garbage collect states when no longer in use, and
support custom policies for archival and analytics.

- Enforce access control with RBAC - only the reconciler
and authorized integrators can access states.
Permissions are fine-grained that limit integrator access

to specific state objects or fields.

17

Performance Implications

- Use high-performance data stores, such as in-memory
key-value stores, to improve speed and efficiency.

- Offload composition logic to data stores with
push-down optimizations like UDFs and stored
procedures to reduce data movement.

- Minimize overhead with zero-copy data exchange and
consolidate state processing into fewer operations.

18

Performance: API vs. Knactor

Setup C-l I I-S S SP Total (ms)
RPC - - - 446 1.8 447.8
K-apiserver| 20.6 0.01 12.5 453 33.1 486.1
K-redis 3.2 0.06 2.7 444 5.8 449.8
K-redis-udf 2.1 0.7 0.1 450 2.9 452.9

- Latency in the online retail app completing a shipment request, with
breakdown by stage. C-I: Checkout and integrator. I: Integrator. I-S:
Integrator and Shipping. S: Shipment processing.

