
Toward Data-Centric Service Composition
Silvery D. Fu, Hong Zhang, Ryan Teoh, Taras Priadka, Sylvia Ratnasamy

Systems Design Studio LLC, UC Berkeley, University of Waterloo

Today we compose services via APIs

• To compose two services:

‣ Expose the API at the callee service

‣ Invoke the API at the caller service

• Examples: RPC, REST, Pub/Sub
1

• A service is made of its app logic and APIs

Today we compose services via APIs

• Consider an online retail application:

‣ Checkout, Shipping, Payment, .. services

‣ Shipping exposes a /ship API

• Checkout requests /ship with order info

• Shipping responds with confirmation
1

API-centric composition makes services
difficult to maintain and evolve.

Observation

2

API-Centric Composition

3

ShippingCheckout

Le
ge

nd

service

⌇⌇

⌇
business

logic

/ship

/api

API-Centric Composition

3

⌇
Shipping

⌇
Checkout

• Developers must embed
message schemas, code
stubs, and routines for
requests, responses, and
error handling directly in
the service code.

service

⌇
business

logic

/ship

/api

Le
ge

nd

comp.
logic

⌃

⌃

API-Centric Composition

4

⌇
Shipping

⌇
Checkout

service

⌇
business

logic

/ship

/api

Le
ge

nd

comp.
logic

⌃

⌃

‣ Composition changes must
be made in the service.

‣ Service rebuild and redeployment
→ interruptions and slow TTM.

⌇
/ship.v2

• Problem 1: service development
and composition are coupled.

API-Centric Composition

⌇
Shipping

⌇
Checkout

/ship⌃

⌇
/ship.v2

• Problem 2: composition logic is scattered.

5

API-Centric Composition

• Problem 2: composition logic is scattered.

⌇
Shipping

⌇
Checkout

/ship

⌇
/ship.v2

⌃ ⌃
⌃

⌇⌇

⌇⌇

⌇⌇⌇ ⌃/submit

Payment

5

‣ Modern applications, such as
Netflix and Uber, may contain
100s/1,000s services.

‣ Composition logic spreads across
multiple services; changes involve
extensive team coordination.

⌇

API-Centric Composition

• Problem 3: data exchanges are hidden.

⌇⌇ ⌃ ⌃

⌇ ⌃
⌃

Payment

ShippingCheckout

{cost, c
urrency}

{txn_id, status}

{addr, item}

{shipment_id}

⌇

API-Centric Composition

• Problem 3: data exchanges are hidden.

⌇⌇ ⌃ ⌃

⌇ ⌃
⌃

Payment

ShippingCheckout

{cost, c
urrency}

{txn_id, status}

{addr, item}

{shipment_id}

‣ Data exchanges are hidden within API
invocations between service pairs.

‣ Lack of visibility hinders runtime
monitoring, reconfiguration, and
optimization.

API-Centric Composition

7

• Development and composition are coupled.

• Composition logic is scattered.

• Data exchanges are hidden.

Hard to maintain and evolve service composition:

Rethinking Service Composition

8

Data-centric composition with two key principles:

‣ Principle 1: Decouple service composition from

service development.

‣ Principle 2: Make data exchanges explicit.

Data-Centric Composition

9

• Each service stores its composition-related states in a

data store and reacts to updates.

• An integrator synchronizes states across data stores

based on given data exchange graphs (DXGs).

⌇
Shipping

⌇
Checkout

⌃ ⌃

Checkout Shipping

Data-Centric Composition

9

• Each service stores its composition-related states in a

data store and reacts to updates.

• An integrator synchronizes states across data stores

based on given data exchange graphs (DXGs).

⌇ ⌇⛌

Integrator

• We refer to this as the Knactor pattern:

Data-Centric Composition

9Checkout Shipping

⌇ ⌇⛌

Integrator

Kubernetes-native actor

‣ Decoupled: services interact only with their own data store.

‣ Consolidated: composition logic resides in the integrator.

‣ Visible: data exchanges are explicit at the integrator.

Example: Online Retail Web App

10

• A web-based e-commerce app where users browse
items, add to cart, and make purchases.

• Contains 11 microservices, including Checkout,
Shipping, and Payment composed with APIs (gRPC).

https://github.com/GoogleCloudPlatform/microservices-demo/

• Reproduce this application using Knactor.

Knactor: Schema and Business Logic

11
Checkout

schema: OnlineRetail/checkout/order
items: object
address: string
cost: number
shippingCost: number # +kr: external
totalCost: number
currency: string
paymentID: string # +kr: external
trackingID: string # +kr: external

Data store schema (YAML)

⌇

Business logic (Python)

Knactor: Data Exchange

12

Input:
 C: OnlineRetail/checkout
 S: OnlineRetail/shipping
 P: OnlineRetail/payment

Integrator (YAML)

Checkout

⌇
Shipping

⌇

⌇
Payment

S:
 items: '[item.name for item in C.order.items]'
 addr: C.order.address
 method: >
 "air" if C.order.cost > 1000 else "ground"

DXG:
 C.order:
 shippingCost: >
 currency_convert(

S.quote.price,
S.quote.currency,
this.currency)

 paymentID: P.id
 trackingID: S.id
 P:
 amount: C.order.totalCost
 currency: C.order.currency

⛌

Comparing API vs. Knactor

13

Three implementation tasks:

1. Compose new Payment and Shipping
services with the Checkout service.

2. Add a shipment policy based on the
order price.

3. Update the Shipping schema.

Online Retail: API vs. Knactor

14

App Task Operation # File SLOC

Online
Retail

- API KN API KN API KN
1 c, f, b, d f 8 1 109 7
2 c, f, b, d f 2 1 14 1
3 c, f, b, d f 4 1 93 7

• Operation: APIs require code changes (c), configuration updates
(f), rebuilds (b), and redeployments (d), whereas Knactor (due to
decoupling) requires only integrator configuration updates.

App Task Operation # File SLOC

Online
Retail

- API KN API KN API KN
1 c, f, b, d f 8 1 109 7
2 c, f, b, d f 2 1 14 1
3 c, f, b, d f 4 1 93 7

Online Retail: API vs. Knactor

14

App Task Operation # File SLOC

Online
Retail

- API KN API KN API KN
1 c, f, b, d f 8 1 109 7
2 c, f, b, d f 2 1 14 1
3 c, f, b, d f 4 1 93 7

• Number of files changed: Knactor consolidates composition
logic, allowing modifications in a single location (integrator
DXG configuration file) instead of across multiple files in
separate service codebases as with APIs.

Online Retail: API vs. Knactor

14

App Task Operation # File SLOC

Online
Retail

- API KN API KN API KN
1 c, f, b, d f 8 1 109 7
2 c, f, b, d f 2 1 14 1
3 c, f, b, d f 4 1 93 7

• SLOC for Composition Logic: Knactor simplifies composition
through declarative data exchanges. Unlike APIs, which require
handling schemas, stubs, and complex API sequences, Knactor
captures operations more concisely in DXGs.

• To simplify maintenance and evolution, services
should be composed over data, not APIs.

Takeaways

15

• API-centric composition couples development
and composition, scatters composition logic,
and hides data exchanges.

Check Out the Paper:

16

• Performance implications and optimizations.

• Framework support for DXG programming.

• State management and access control.

Reach Out: team@sd.studio

Backup

State Retention and Access Control

17

• Garbage collect states when no longer in use, and

support custom policies for archival and analytics.

• Enforce access control with RBAC - only the reconciler

and authorized integrators can access states.

‣ Permissions are fine-grained that limit integrator access

to specific state objects or fields.

Performance Implications

18

• Use high-performance data stores, such as in-memory
key-value stores, to improve speed and efficiency.

• Offload composition logic to data stores with
push-down optimizations like UDFs and stored
procedures to reduce data movement.

• Minimize overhead with zero-copy data exchange and
consolidate state processing into fewer operations.

Performance: API vs. Knactor

19

Setup C-I I I-S S SP Total (ms)
RPC - - - 446 1.8 447.8

K-apiserver 20.6 0.01 12.5 453 33.1 486.1
K-redis 3.2 0.06 2.7 444 5.8 449.8

K-redis-udf 2.1 0.7 0.1 450 2.9 452.9

• Latency in the online retail app completing a shipment request, with
breakdown by stage. C-I: Checkout and integrator. I: Integrator. I-S:
Integrator and Shipping. S: Shipment processing.

