
Toward Data-Centric Service Composition
Silvery D. Fu1,2, Hong Zhang3, Ryan Teoh1,2, Taras Priadka1,2, Sylvia Ratnasamy2

1Systems Design Studio, 2UC Berkeley, 3University of Waterloo

Abstract
Microservices are increasingly used in modern applications,
leading to a growing need for effective service composition
solutions. However, we argue that traditional API-centric com-
position mechanisms (e.g., RPC, REST, and Pub/Sub) hamper
the modularity of microservices. These mechanisms introduce
rigid code-level coupling, scatter composition logic, and hin-
der visibility into cross-service data exchanges. Ultimately,
these limitations complicate the maintenance and evolution of
microservice-based applications. In this paper, we propose a
rethinking of service composition and present Knactor, a new
data-centric composition framework to restore the modularity
that microservices were intended to offer. Knactor decouples
service composition from service development, allowing com-
position to be implemented as explicit data exchanges among
multiple services. Our initial case study suggests that this ap-
proach not only simplifies service composition but also opens
up opportunities for data-driven policies and optimizations.

CCS Concepts
• Software and its engineering → Software architectures.

Keywords
Design Principles, Service Composition, Microservices

ACM Reference Format:
Silvery D. Fu, Hong Zhang, Ryan Teoh, Taras Priadka, Sylvia Rat-
nasamy. 2024. Toward Data-Centric Service Composition. In The
23rd ACM Workshop on Hot Topics in Networks (HOTNETS ’24),
November 18–19, 2024, Irvine, CA, USA. ACM, New York, NY,
USA, 8 pages. https://doi.org/10.1145/3696348.3702013

1 Introduction
The microservice architecture has been widely adopted in
building modern applications [3, 8]. By breaking software
systems down into smaller, independently deployable ser-
vices, microservices make it easier to distribute development
across teams and organizations such as SaaS providers and

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1272-2/24/11
https://doi.org/10.1145/3696348.3702013

⥁

Figure 1: Comparison of service composition mechanisms. In
RPC, Service 𝑆𝐴 invokes the API defined by Service 𝑆𝐵 . In Pub/Sub,
𝑆𝐴 publishes messages to a topic where 𝑆𝐵 subscribes and receives
these messages. In Knactor, 𝑆𝐴 and 𝑆𝐵 externalize their states in data
stores hosted on a data exchange. An integrator processes and syncs
states between the data stores.

open-source communities. As more applications embrace this
architecture, such as web and mobile back-ends, datacenter
management, robot coordination, and IoT/smart space con-
trollers [13, 15, 19, 24, 44, 46], the need for effective service
composition becomes increasingly important. Service com-
position combines multiple microservices to create an end-
to-end application (app), making it a crucial and challenging
aspect in application development.

Today, service composition is typically achieved via remote
procedure calls (RPCs) [21] or via publish-subscribe messag-
ing (Pub/Sub) [10], as depicted in Fig.1a. With RPCs, service
𝑆𝐴 invokes the API of another service 𝑆𝐵 by incorporating
the API endpoints and message schemas defined by 𝑆𝐵 (e.g.,
gRPC and Protobuf [21]). Then, at run-time, 𝑆𝐴 sends a re-
quest message via a synchronous call to 𝑆𝐵 and, after running
its procedure, 𝑆𝐵 replies with a response message. Pub/Sub
replaces synchronous communication with asynchronous de-
livery of messages. In Pub/Sub, 𝑆𝐵 subscribes to a topic on a
message broker (e.g., Kafka [10]). 𝑆𝐴 can then send messages
to this topic, which 𝑆𝐵 receives asynchronously and decodes
using a schema. In this case, the topic and the schema (pre-
defined by either 𝑆𝐴 or 𝑆𝐵) can be viewed as a variant of an
API endpoint. We refer to these composition mechanisms as
API-centric composition where services are composed using
predefined APIs at the time of development.

However, the API-centric approach leads to three draw-
backs for service composition. First, it introduces tight cou-
pling between services. To compose services 𝑆𝐵 to 𝑆𝐴, service
developers incorporate 𝑆𝐵’s schemas, client code stubs, in-
vocation methods, response and error handling in the 𝑆𝐴’s

https://doi.org/10.1145/3696348.3702013
https://doi.org/10.1145/3696348.3702013

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Silvery D. Fu et al.

SB

SC

SA

SA

(a) Cannot compose SA and SC
w/o code changes in SA.

SC

SB

(b) With development and composition decoupled,
one can compose SA and SC w/o modifying SA.

Dev
</>

Cmp

</>

</>

Figure 2: Decoupling service development and composition. Ex-
isting composition mechanisms, shown in (a), couple the service
development and composition. Knactor, shown in (b), allows these
two to be decoupled. Dev: Development; Cmp: Composition.

code itself. Consequently, making composition changes, such
as replacing 𝑆𝐵 with 𝑆𝐶 or adapting 𝑆𝐴 to new schema of
𝑆𝐵 , requires accessing and modifying the code of 𝑆𝐴 as well
as rebuilding and redeploying it. Second, in an application
consisting of 𝑁 services, the composition logic is scattered
across 𝑂 (𝑁) services. Each service may use 𝑂 (𝑁) external
APIs, while its own APIs are used by 𝑂 (𝑁) other services,
depending on the in/out-degree [51]. As a result, changes in
the composition logic often involve and impact many services
in the application, requiring extensive coordination and code-
level changes across developers and teams responsible for
each service. Third, the composition logic—especially the
data exchanges among services—are hidden within the API
invocations between individual pairs of services. This lack of
visibility hinders customizing and optimizing composition at
the app-level and at run-time.

The above drawbacks suggest that while microservices are
modular, existing composition mechanisms hamper this mod-
ularity, complicating both the development and the composi-
tion of microservices. In particular, as modern applications
increasingly consist of 10s, 100s, or even 1,000s of microser-
vices (e.g., as seen in web apps [2, 5, 26]), implementing and
evolving service composition that is coupled, scattered, and
hidden among individual services can become painstaking
and prone to errors (§2). Such complexity escalates when
apps and services are developed by different companies or
vendors (e.g., as seen in IoT apps [7, 33] and public API
marketplaces [38]) due to the high communication and coor-
dination costs for making service changes [1].

How can we simplify service composition and restore the
modularity that microservices were designed to offer? In this
paper, we propose two guiding principles for service com-
position: (P1) Decouple service composition from service
development, enabling the flexibility to implement and con-
solidate service composition after the development phase;
and (P2) Make data exchanges explicit, providing greater
visibility and control to simplify service composition.

We present a new service composition mechanism that fol-
lows principles P1 and P2. Our key insight is that services

should be composed via states, not APIs: we propose replac-
ing API-centric composition with a new approach that we
term data-centric composition. In this data-centric approach,
there are no RPCs or messaging between services, i.e., no
direct invocation of each others’ APIs. Instead, each service
externalizes its states to an associated data store (Fig.1b),1

and an integrator module acts as the intermediary that com-
poses services by processing and syncing states between their
data stores. The integrator can be easily replaced or reconfig-
ured, not only during development but also at run-time (P1).
In the integrator, developers can use dedicated state process-
ing primitives, such as data exchange graphs and dataflow
operators (§3), to conveniently specify the desired data ex-
changes among services (P2).

We call this approach to developing and composing ser-
vices as the “Knactor pattern.”2 The Knactor pattern aims to
address the drawbacks of existing service composition mech-
anisms through its core design choices: (i) Knactor confines
the interaction of each service to its own data store as opposed
to introducing code-level coupling to other services. The com-
position logic is implemented in the integrator without modi-
fying the services’ code (Fig.2) and can be reconfigured even
at run-time. (ii) Knactor consolidates the composition logic
into a single or a few application-level integrator modules,
as opposed to the 𝑂 (𝑁) services and their codebases; thus
making it easier to implement composition logic, reducing
excessive coordination and communication across teams or
companies. (iii) By having services externalize their states, de-
velopers gain the ability to implement composition in the form
of data exchanges, with the help of dedicated state processing
primitives; as opposed to dealing with intricate sequences of
API invocations across different services. This approach also
makes the composition code easier to change and maintain.

We further discuss the motivation for the Knactor pattern
(§2) and propose our design for the Knactor framework to
support this pattern in microservices (§3). We report on our
early experiences with prototyping the Knactor framework
and using it in example Web and IoT apps (§4). Finally, we
discuss related work and outline future research directions on
data-centric service composition (§5).

2 Revisiting Service Composition
While microservices, and more broadly the service-oriented
architecture (SOA [37]), offer flexibility and scalability, they
also create the need for effective composition and coopera-
tion between services and teams. Today, composition is based
on communication protocols such as RPC [11, 21], message

1Note that unlike in Pub/Sub, in our model, a service does not subscribe or
publish to a different service but only to its own data store.
2Knactor (pronounced “connector”) stands for Kubernetes-native actors in
a nod to Kubernetes [24] and the actor model [39, 49] from which we drew
inspiration (see §5).

Toward Data-Centric Service Composition HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

Check-
out

Ship-
ping

Ship-
ping

Check-
out

ShipOrder
({addr,item})

DC
Invoke

ShipOrder(..)

RPC:

DC
Expose
{Order}

DS
Expose

{Shipment}DA
Configure
integrator

Extract {addr,item} from
{Order}, add to {Shipment}

(a) RPC (b) Knactor

DS
Define

/ShipOrder

Figure 3: Comparison of composition mechanisms: RPC in (a) vs.
Knactor in (b) for implementing an online retail app. DX: Developer
for service or application X.

brokers [10, 16], and REST APIs [20, 36]. In what follows,
we use examples from real-world apps to review the develop-
ment workflow with existing composition mechanisms and
motivate the case for a new approach. We’ll use these apps in
§3-§4 and show how they’re handled with Knactor.
(1) Web: Online Retail. The first example is part of an online
retail web application [19]. The original app uses gRPC to
compose services [21]. Our focus is on two microservices,
Checkout (𝐶) and Shipping (𝑆), and on the shipment request
from 𝐶 to 𝑆 , which creates shipments for orders that have
been checked out. With RPC, the developer of 𝑆 (𝐷𝑆) de-
fines API endpoints with the API’s name, version, and the
message schema(s), etc. for the request messages in a Proto-
buf [30] definition file. As shown in Fig.3a, in this example,
the API endpoint is /ShipOrder which takes item name
and shipment address as its inputs. Then, 𝐷𝑆 may share the
API definition file with the developer of𝐶 (𝐷𝐶), who uses the
file to create the client stub code, imports and uses the code
in 𝐶, and finally recompiles/builds 𝐶.
(2) IoT: Smart Home. The second example is from a home
automation app [33, 44, 57] adapted from an open-source IoT
app simulator [45]. The app includes a house service (devel-
oped by IoT company X, e.g., Samsung SmartThings [33])
that automatically adjusts the brightness level of lamps (from
device vendor Y, e.g., Lifx [25]) based on occupancy sensor
readings (from device vendor Z, e.g., Ring [9]) while mon-
itoring the energy consumption of these devices. There are
three services in this application—House (𝐻), Motion (𝑀),
and Lamp (𝐿)—that are composed via the message broker
EMQX [16]. 𝐻 subscribes to messages on 𝑀 (the “motion”
topic), and when 𝐻 receives a message reporting “triggered:
true”, it publishes a message to 𝐿’s topic to adjust the lamp’s
brightness level. For each service, the developer uses Protobuf
to define schemas for the messages exchanged among devices.
For example, 𝐻 uses the schema of 𝑀 and 𝐿 to deserialize the
messages from the two and vice versa.
Problem 1: Services are overly coupled. In both examples,
we observe that API-centric composition introduces code-
level coupling between services (e.g., 𝐶 to 𝑆 , 𝐻 to 𝐿 and 𝑀).
Consequently, making any composition changes (e.g., switch-
ing 𝐶 to a new shipping service) and ensuring compatibility
with APIs (e.g., adapting 𝐶 or 𝐻 to the changes of schema

of 𝑆 or 𝐿) require modifications at the code level. This fur-
ther leads to rebuilding and redeploying services, which also
requires careful planning in the production environment to
avoid application downtime [4, 6] and takes additional time
and compute resources. For example, adapting 𝐶 to an API
schema change in 𝑆 requires 69 lines of code and configura-
tion updates (§4), followed by recompiling 𝐶, updating and
uploading its container images, and redeploying 𝐶 using a
rolling update in Kubernetes [28]. Such changes are common
in microservice-based applications [14, 27].
Problem 2: Composition logic is scattered. A direct con-
sequence of implementing service composition within indi-
vidual services is the scattering of composition logic across
multiple services and service codebases. In the web app we
studied, we identified 15 methods on handling API invoca-
tions scattered across 11 services, and 36 across 14 services
in another well-studied social networking app [34, 47]. It is
worth noting that these examples represent only small-scale
apps developed for demonstration purposes. In production, ap-
plications may have composition logic scattered across more
than 100s/1,000s of microservices [2, 5, 51].
Problem 3: Data exchanges are hidden. The examples also
highlight that the data exchanges among services are hidden
within pair-wise API invocations. In the online retail app,
when an order checkout request is received by the𝐶, it triggers
an RPC request to the 𝑆 . This request includes the order’s
states, which are not accessible outside this pair of services.
Similarly, in the smart home system, state changes in the
𝑀 or the 𝐿 implicitly influence the state of the 𝐻 through
the messages exchanged among these services. This lack
of visibility hinders the ability to add functionalities (e.g.,
implementing “conditional composition” where 𝐶 should opt
for air shipping when the order’s price exceeds 1, 000 USD)
and access control (e.g., 𝐻 should not access the 𝐿 during
user-defined sleep hours).

3 Knactor Design

We present the rationale of the Knactor pattern (§3.1), the
framework’s designs (§3.2), and optimizations (§3.3).

3.1 The Rationale of the Knactor Pattern

Knactor’s design is guided by two key principles aimed at
enhancing modularity. The first is to decouple service com-
position from service development, which allows for the
creation and updating of service composition outside the ser-
vice development phase. This principle follows the classic
design principle of separating mechanism and policy, i.e., the
composition mechanism should not dictate which services can
be composed. The rationale is that at the development stage,
it can be challenging to anticipate all the ways the service
might be used and extended in apps (i.e., the “composition

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Silvery D. Fu et al.

policy”). Thus, an overly constraining composition mecha-
nism can substantially increase the cost and delay involved in
policy changes post-development.

Knactor achieves a cleaner separation of composition mech-
anism and policy by enabling late-binding of services via two
levels of indirection: a per-service data store and integrator. In
Knactor (Fig.1b), a service does not directly access other ser-
vices’ APIs nor their states but its own data store only. Then,
an integrator module acts as an intermediary, responsible for
processing and syncing states across the data stores of the
services being composed.

The second guiding principle of Knactor is to replace API
invocations with explicit data exchanges among services.
The rationale is that developers, rather than calling and re-
sponding to APIs, can concisely specify data exchange pat-
terns among multiple services and leverage the dedicated state
processing primitives of a framework (§3.2) for simplified
composition. This approach also streamlines the maintenance
and evolution of composition logic, as updating the compo-
sition logic only requires altering the data exchange specifi-
cation, eliminating the need to rewire API calls (§4). Finally,
the declarative nature of data-centric composition separates
the specification of composition from its execution, providing
opportunities for optimization (§3.3).

3.2 Knactor Framework

The Knactor framework provides the programming libraries,
tooling, and runtime to facilitate service composition with the
data-centric approach. In Knactor, each microservice is rep-
resented as a knactor3 that contains a reconciler component
and one or multiple data stores.
Data store and exchange. A data store keeps the states rel-
evant to the knactor’s operation, such as order status in the
Checkout service (Fig.5). The data stores are hosted on a
logically centralized Data Exchange (DE) that provides state
access and management capabilities such as data storage,
caching, scaling, analytics, and access control. There can be
different types of DEs that each specialized at handling a
different type of states/data, e.g., API objects [22], logs [54],
and database tables [29]. We envision the DEs will be taken
off-the-shelf and the Knactor framework provides wrappers,
tooling, and extensions around these DEs for simplifying and
optimizing composition (§3.3). As a starting point, we focus
on two types of DEs, “Object” and “Log”. The former keeps
states as attribute-value pairs in a k-v store and exposes APIs
for CRUD operations over these states, while the latter keeps
states as structured and semi-structured data as append-only
logs and exposes data ingestion and analytics APIs. A knac-
tor can have multiple data stores and thus use multiple DEs.
For example, in Fig.4, the three knactors each have two data
3We overload the term “Knactor” to mean both the pattern and the framework,
and the lowercase “knactor” the service abstraction.

MotionHouse

H M

H M

re
co

nc
ile

r
da

ta

st
or

e
da

ta
st

or
e

Lamp

L

L

K
na

ct
or

{kwh, motion} {triggered}

{sensitivity}{brightness}{intensity}

{energy}

Log
O

bject

Figure 4: Building the smart home app in Knactor. There are
three knactors, Lamp, House, and Motion each has two data stores,
one on Object data exchange and one on Log data exchange.

1 schema: OnlineRetail/v1/Checkout/Order
2 items: object
3 address: string
4 cost: number
5 shippingCost: number # +kr: external
6 totalCost: number
7 currency: string
8 paymentID: string # +kr: external
9 trackingID: string # +kr: external

Figure 5: Schema of the Checkout knactor’s data store.
1 Input:
2 C: OnlineRetail/v1/Checkout/knactor-checkout
3 S: OnlineRetail/v1/Shipping/knactor-shipping
4 P: OnlineRetail/v1/Payment/knactor-payment
5 DXG:
6 C.order:
7 shippingCost: >
8 currency_convert(S.quote.price,
9 S.quote.currency, this.currency)

10 paymentID: P.id
11 trackingID: S.id
12 P:
13 # other fields in the data store: id
14 amount: C.order.totalCost
15 currency: C.order.currency
16 S:
17 # other fields in the data store: id, quote
18 items: '[item.name for item in C.order.items]'
19 addr: C.order.address
20 method: >
21 "air" if C.order.cost > 1000 else "ground"

Figure 6: Specification of the data exchange graph (DXG) for
the integrator in the online retail web app.

stores on Object and Log, with the ones on Object storing
configuration states such as lamp’s intensity level while the
ones on Log storing sensor data such as motion readings.
Reconciler. The reconciler is a code module that interacts
with the knactor’s data store(s) using the state access methods
provided by the DE. It responds to state updates from the
data store and initiates corresponding actions. For example,
the reconciler inside the Shipping knactor may process a new
shipment object that appears in the data store (e.g., by initiat-
ing a FedEx delivery [18]), and can also update the data store,
such as posting the shipment’s tracking ID. Service develop-
ers can adapt existing services by removing any external API
invocations they aim to decouple from the service and adding

Toward Data-Centric Service Composition HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

required state access to the data store, or they can design and
implement a new reconciler from scratch.
Integrator. An integrator syncs and processes states between
data stores leveraging the APIs provided by the DEs. For
instance, the integrator in Fig.3b can use the CRUD APIs
provided by the Object DE to obtain the order states from
the Checkout service, extract the shipment states items and
addr, and update the Shipping knactor’s data store. The
framework provides built-in integrators specialized for pro-
cessing states over a type of DE and data exchange patterns.
Developers can use the state processing primitives from a
built-in integrator to implement composition (described next).
We focus on two built-in integrators, Cast and Sync, that
handle states on Object and Log respectively.
Development workflow. The development workflow contains
three logical steps: (i) Externalize. At development time, the
developer registers the schema of the knactor’s data store to
the DE. (ii) Express. The developer indicates what states its
data store can ingest by annotating the fields in the data store,
e.g., in the Checkout knactor’s data store (e.g., Fig.5) can
indicate the “shippingCost”, “paymentID”, and “trackingID”
are annotated to indicate they are to be filled externally by
an integrator. Likewise, the House knactor can indicate it can
ingest “kwh” and “motion” readings (Fig.4). (iii) Exchange.
To compose services/knactors, the developer specifies the
data exchanges among their data stores via programming or
configuring the integrators. The state accesses and exchanges
are subject to access control (§3.3).
Data exchange primitives. The integrator library provides
primitives that simplify the expression of data exchange pat-
terns for service composition. As shown in Fig.6, the Cast
integrator supports data exchange graphs (DXGs), allowing
the declarative description of data exchanges among multiple
services. It can include references to states in each service’s
data store, state transformation and aggregation functions,
and data-centric policies. Similarly, the Sync integrator offers
dataflow operators like filter, rename, sort, and aggregation
functions. For example, the House can retrieve motion sensor
readings from the Motion service, and the Sync integrator can
rename the “trigger” field to “motion” before loading the data
into the House’s data store.

3.3 Run-time Operation and Optimization

Integrator reconfiguration. Integrators, such as Cast and
Sync, can be dynamically reconfigured at run-time to add new
composition logic or modify existing configurations. This
avoids service-level code changes, rebuilding, and redeploy-
ment for each composition update. For example, a new data-
centric policy can easily be introduced to the DXG specifica-
tion (Fig.6, line 22) to determine the shipment method based
on the order price, without changing Checkout or Shipping.

State retention. By default, states in the data stores are pre-
served until they’re no longer required by entities such as the
knactor’s reconciler or integrators. State retention can be man-
aged via reference counting or similar mechanisms that track
the usage of state objects. Once a reconciler or integrator has
performed its operation on a state object, the object is marked
as unused and the DEs can then perform garbage collection
with standard recovery techniques. In addition, one can also
specify customized state retention policies for archival or
analytical purposes.
State access control. Knactor ensures only authorized entities
can access the states in the data stores. First, developers can
only view data store schemas, not actual states. At run-time,
access to a knactor’s data store is limited to its own reconciler
and any integrators that have been granted access through
access control policies. This can be done via the standard
Role-based Access Control (RBAC), assigning roles to rec-
oncilers and integrators to manage access [35]. Second, the
data-centric approach allows finer-grained access control over
states [58], e.g., granting access to certain state objects/fields
but not others to specific roles.
Performance optimization. Knactor can optimize data ex-
change performance and efficiency by leveraging the mod-
ularity of the data store and integrator. First, one can use
DEs optimized for high-performance such as in-memory k-v
stores [32]. The integrators can perform push-down optimiza-
tion to offload composition logic to the DE using features such
as user-defined functions (UDFs) and stored procedures [31]
common in these DEs. This can accelerate and reduce data
movement between the DE and integrator. Second, when data
stores are hosted on the DE, the DE and integrator can im-
plement zero-copy data exchange to further minimize the
data movement. Third, integrators can consolidate the state
processing logic by combining multiple state processing op-
erations into fewer and more efficient ones.

4 Prototype and Preliminary Studies
We built a prototype of the Knactor framework. It contains
a programming library in Python for knactor development
including communication packages for DEs, code generators,
and a CLI for operating knactors. For the two DEs, we used
open-source Kubernetes apiserver [22] (and Redis [32] as an
alternative) for Object and Zed lake [54]) for Log; we im-
plemented the built-in integrators, Cast and Sync, for Object
and Log respectively. Using the Knactor prototype, we imple-
mented the two example apps, online retail and smart home
mentioned earlier. The online retail app consists of 11 knac-
tors including the Checkout and Shipment discussed earlier,
and a Cast-based integrator that composes the knactors.

We studied how well Knactor simplifies service composi-
tion and its implications on performance using the prototype
and apps. We report the preliminary results in what follows.

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Silvery D. Fu et al.

App Task Operation # File SLOC

Online
Retail

- API KN API KN API KN
1 c / f / b / d f 8 1 109 7
2 c / f / b / d f 2 1 14 1
3 c / f / b / d f 4 1 93 7

Table 1: Comparison of composition cost: API-centric (API) vs.
Knactor (KN). Annotations indicate required operations, c: code
changes; f: config. changes. b: rebuild service; d: redeploy service.

Composition cost. We compare the service composition ef-
fort required for the Knactor and the API-centric approach
using various tasks in the online retail app. The tasks include
𝑇1: composing the Payment and Shipping services with the
Checkout service; 𝑇2: adding a shipment policy based on
the order price; and 𝑇3: updating the Shipping schema. We
compare the required operations (e.g., code modifications,
configuration updates, build and deployment steps), number
of files, and the source lines of code (SLOC) changed or used
to implement the task, including the services’ source code,
scripts, configurations, and schema definitions.
Takeaways. Table 1 presents the results. As shown, (i) In all
tasks 𝑇1-𝑇3, composition changes using Knactor require only
reconfiguring the integrator module, while the API-centric
approach requires code and configuration changes as well as
service rebuilds and redeployments. This demonstrates Kn-
actor’s benefit of decoupling composition from development
through externalized states and integrator, which facilitates
composition without code-level changes at the individual ser-
vices. (ii) Knactor enables the consolidation of composition
logic, allowing modifications to be made in a single location
(e.g., the DXG configuration) instead of multiple files across
separate services/service codebases, which further simplifies
the composition task. (iii) While the core composition logic
remains the same in both approaches, compared to the API-
centric approach, Knactor simplifies the implementation of
composition logic, reducing the required SLOC (e.g., by 102
in 𝑇1). We conjecture this is due to the imperative nature of
the API-centric approach towards composition, which incurs
not only the overhead of handling the “mechanics” (e.g., im-
porting and handling schemas and client stubs), but also the
complexity of expressing interactions across services (e.g.,
Checkout, Shipping, and Payment) as a sequence of API in-
vocations. In contrast, Knactor enables the composition task
to be declaratively and concisely expressed as data exchanges
over externalized states (e.g., DXG in Fig.6), capturing opera-
tion ordering as state dependencies are resolved.
Impact on application performance. Compared to RPC,
Knactor introduces two indirections for modularity: the data
store and the integrator. To understand their impact on ap-
plication performance, we benchmark the Cast between the
Checkout and Shipping knactors deployed on a Kubernetes
cluster. We measure the state propagation latency, with and

Setup C-I I I-S S Prop. (ms) Total (ms)
RPC - - - 446 1.8 447.8

K-apiserver 20.6 0.01 12.5 453 33.1 486.1
K-redis 3.2 0.06 2.7 444 5.8 449.8

K-redis-udf 2.1 0.7 0.1 450 2.9 452.9
Table 2: Latency in the online retail app completing a shipment
request, with breakdown by stage. C-I: Checkout and integrator. I:
Integrator. I-S: Integrator and Shipping. S: Shipment processing.

without optimizations (§3.3), and repeat for the API-centric
baselines and compare the results.
Takeaways. Table 2 provides a breakdown of latencies in the
online retail application. We compare three Knactor configura-
tions: K-apiserver (using a strongly consistent k-v store with
persistent storage [12] for Object exchange), K-redis (employ-
ing Redis, an in-memory data store [32]), and K-redis-udf
(incorporating an integrator pushdown optimization using
Redis’s UDF [31]). First, the choice of DE substantially im-
pacts the state propagation latency (33.1𝑚𝑠 in K-apiserver vs.
5.8𝑚𝑠 in K-redis); a high-performance DE can significantly
reduce the data movement overhead from the integrator and
reconciler. This overhead can be further reduced via integrator
pushdown (e.g., from 2.7𝑚𝑠 to 0.1𝑚𝑠 between the integrator
and Shipping’s data store, with K-redis-udf). Second, the
overhead has a relatively small impact on the performance of
this app we studied, with the Shipment processing [18] as the
primary bottleneck. However, note that Knactor does lead to
higher latency overhead for state propagation; thus, for highly
latency-sensitive workloads [53], direct RPC may still be the
preferred approach.

5 Discussion and Future Work
In this section, we expand on related work beyond what was
mentioned in §2, followed by future directions in Knactor.
Kubernetes and actor model. Knactor’s design is influenced
by Kubernetes [41], a cluster management system that man-
ages applications via controllers [23]. The controllers read
from and write to shared API/resource objects on an API
server [22] as a means to interact. Compared to Knactor, Ku-
bernetes does not contain the integrator abstraction, separation
of data stores, and specialized data exchange designs. Knac-
tor is also inspired by the actor model [39, 49], where actors
are separate units of computation that interact via message
passing. Knactor can be seen as consisting of two types of
actors, knactors that express the main service/business logic
and integrators that implement the composition logic and data
exchanges between knactors.
Apps and applicability. Knactor is particularly beneficial for
applications with many microservices and complex composi-
tions, such as cellular EPC [48] besides the ones discussed in
this paper. Currently, these systems rely on many inter-service
APIs which leads to significant complexity [52] and is diffi-
cult to evolve. Knactor offers the benefits of enabling service

Toward Data-Centric Service Composition HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

composition to be performed by individuals who are not the
original service developers. Similar to how API definitions
and documentation convey information about the behaviors
and semantics of today’s services, Knactor developers can use
the data store schema and other documentation to obtain re-
quired composition-related information. If these resources do
not sufficiently describe the services’ behaviors for effective
composition, one can still fall back on engaging the original
service developers to implement the composition task.
Framework support for composition. The visibility over
states and data exchanges in Knactor allows developers to
leverage tools such as formal methods and static analysis [55]
as well as run-time primitives such as transactions [43] for
implementing composition at large-scale. For example, the
Cast can provide loop and unused state detection with static
analysis to assist developers build robust data exchanges.
Compatibility and deployability. We expect the use of Knac-
tor with existing systems can be facilitated through the use of
proxies or porting mechanisms [17, 42]. Deployment issues
such as load balancing, autoscaling, and observability, such as
monitoring knactor SLOs through distributed tracing [40, 56]
and telemetry [50], are also worth exploring.
Ecosystem. Knactor could potentially have far-reaching im-
plications for the service and application ecosystem. For
example, a marketplace for knactors and integrators could
emerge, akin to current API marketplaces [38]. In such a
marketplace, knactors and integrators, developed by various
individuals or organizations, could be shared and reused, fos-
tering more collaborative and streamlined app development.

Acknowledgments
The authors would like to thank the anonymous reviewers for
their valuable feedback, which provided useful insights for
our ongoing work. We also extend our gratitude to Wen Zhang
and Ethan Jackson for their valuable discussions and support
throughout the project. The lead author is especially grateful
to Eric Brewer for the discussion they had on Kubernetes,
which inspired the ideation of Knactor.

References
[1] 2014. Microservices: a definition of this new architectural term. https:

//martinfowler.com/articles/microservices.html.
[2] 2019. How Uber monitors 4,000 Microservices. https://www.cncf.io/

blog/2019/02/05/how-uber-monitors-4000-microservices/.
[3] 2020. Microservices Architecture Market Statistics - 2026. https:

//www.alliedmarketresearch.com/microservices-architecture-market.
[4] 2021. 4 Microservice Deployment Patterns That Improve Availabil-

ity. https://www.opslevel.com/resources/4-microservice-deployment-
patterns-that-improve-availability.

[5] 2021. How Airbnb and Twitter Cut Back on Microservice Com-
plexities. https://thenewstack.io/how-airbnb-and-twitter-cut-back-on-
microservice-complexities.

[6] 2021. Zero Downtime Deployment Techniques: Rolling Up-
date. https://www.encora.com/insights/zero-downtime-deployment-

techniques-rolling-update.
[7] 2022. IoT Platform Companies Landscape 2021/2022. https://iot-

analytics.com/iot-platform-companies-landscape/.
[8] 2023. Do you utilize microservices within your organiza-

tion? https://www.statista.com/statistics/1236823/microservices-usage-
per-organization-size/.

[9] 2024. Alarm Motion Detector. https://shop.ring.com/products/alarm-
motion-detector-v2.

[10] 2024. Apache Kafka. https://kafka.apache.org/.
[11] 2024. Apache Thrift. https://thrift.apache.org/.
[12] 2024. APIs for building portable and reliable microservices. https:

//dapr.io/.
[13] 2024. Azure Kubernetes Service (AKS) Fabrikam Drone Delivery.

https://github.com/mspnp/aks-fabrikam-dronedelivery.
[14] 2024. Creating, evolving, and versioning microservice

APIs and contracts. https://learn.microsoft.com/en-us/dotnet/
architecture/microservices/architect-microservice-container-
applications/maintain-microservice-apis.

[15] 2024. Custom Resources. https://spring.io/.
[16] 2024. EMQX MQTT Broker. https://www.emqx.io/.
[17] 2024. Envoy Proxy. https://www.envoyproxy.io/.
[18] 2024. FedEx Shipping API. https://www.shipengine.com/welcome-

fedex-api/.
[19] 2024. GoogleCloudPlatform/microservices-demo: A web-based e-

commerce app consists of an 11-tier microservices application. https:
//github.com/GoogleCloudPlatform/microservices-demo.

[20] 2024. GraphQL: A query language for your API. https://graphql.org/.
[21] 2024. gRPC: A high performance, open source universal RPC frame-

work. https://grpc.io/.
[22] 2024. Kubernetes Apiserver. https://github.com/kubernetes/apiserver.
[23] 2024. Kubernetes Controllers. https://kubernetes.io/docs/concepts/

architecture/controller/.
[24] 2024. Kubernetes: Production-Grade Container Orchestration. https:

//kubernetes.io/.
[25] 2024. LIFX Smart Home Light. https://www.lifx.com/.
[26] 2024. Netflix Architecture: How Much Does Netflix’s AWS Cost?

https://www.cloudzero.com/blog/netflix-aws.
[27] 2024. Panel: the Correct Number of Microservices for a System Is 489.

https://www.infoq.com/presentations/number-microservices-system/.
[28] 2024. Performing a Rolling Update. https://kubernetes.io/docs/tutorials/

kubernetes-basics/update/update-intro/.
[29] 2024. PostgreSQL: The World’s Most Advanced Open Source Rela-

tional Database. https://www.postgresql.org/.
[30] 2024. Protocol buffers are a language-neutral, platform-neutral

extensible mechanism for serializing structured data. https://
developers.google.com/protocol-buffers.

[31] 2024. Redis functions. https://redis.io/docs/manual/programmability/
functions-intro/.

[32] 2024. Redis: the open source, in-memory data store. https://redis.io/.
[33] 2024. SmartThings. https://smartthings.developer.samsung.com/.
[34] 2024. Social Network Microservices. https://github.com/delimitrou/

DeathStarBench/tree/master/socialNetwork.
[35] 2024. Using RBAC Authorization. https://kubernetes.io/docs/reference/

access-authn-authz/rbac/.
[36] 2024. What is a REST API? https://www.ibm.com/topics/rest-apis.
[37] 2024. What Is Service-Oriented Architecture? https://aws.amazon.com/

what-is/service-oriented-architecture/.
[38] 2024. The World’s Largest API Hub. https://rapidapi.com/.
[39] Gul Agha. 1986. Actors: a model of concurrent computation in dis-

tributed systems. MIT press.
[40] Jessica Berg, Fabian Ruffy, Khanh Nguyen, Nicholas Yang, Taegyun

Kim, Anirudh Sivaraman, Ravi Netravali, and Srinivas Narayana. 2021.

https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://www.cncf.io/blog/2019/02/05/how-uber-monitors-4000-microservices/
https://www.cncf.io/blog/2019/02/05/how-uber-monitors-4000-microservices/
https://www.alliedmarketresearch.com/microservices-architecture-market
https://www.alliedmarketresearch.com/microservices-architecture-market
https://www.opslevel.com/resources/4-microservice-deployment-patterns-that-improve-availability
https://www.opslevel.com/resources/4-microservice-deployment-patterns-that-improve-availability
https://thenewstack.io/how-airbnb-and-twitter-cut-back-on-microservice-complexities
https://thenewstack.io/how-airbnb-and-twitter-cut-back-on-microservice-complexities
https://www.encora.com/insights/zero-downtime-deployment-techniques-rolling-update
https://www.encora.com/insights/zero-downtime-deployment-techniques-rolling-update
https://iot-analytics.com/iot-platform-companies-landscape/
https://iot-analytics.com/iot-platform-companies-landscape/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://www.statista.com/statistics/1236823/microservices-usage-per-organization-size/
https://shop.ring.com/products/alarm-motion-detector-v2
https://shop.ring.com/products/alarm-motion-detector-v2
https://kafka.apache.org/
https://thrift.apache.org/
https://dapr.io/
https://dapr.io/
https://github.com/mspnp/aks-fabrikam-dronedelivery
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/maintain-microservice-apis
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/maintain-microservice-apis
https://learn.microsoft.com/en-us/dotnet/architecture/microservices/architect-microservice-container-applications/maintain-microservice-apis
https://spring.io/
https://www.emqx.io/
https://www.envoyproxy.io/
https://www.shipengine.com/welcome-fedex-api/
https://www.shipengine.com/welcome-fedex-api/
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://graphql.org/
https://grpc.io/
https://github.com/kubernetes/apiserver
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/
https://kubernetes.io/
https://www.lifx.com/
https://www.cloudzero.com/blog/netflix-aws
https://www.infoq.com/presentations/number-microservices-system/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://kubernetes.io/docs/tutorials/kubernetes-basics/update/update-intro/
https://www.postgresql.org/
https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://redis.io/docs/manual/programmability/functions-intro/
https://redis.io/docs/manual/programmability/functions-intro/
https://redis.io/
https://smartthings.developer.samsung.com/
https://github.com/delimitrou/DeathStarBench/tree/master/socialNetwork
https://github.com/delimitrou/DeathStarBench/tree/master/socialNetwork
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://www.ibm.com/topics/rest-apis
https://aws.amazon.com/what-is/service-oriented-architecture/
https://aws.amazon.com/what-is/service-oriented-architecture/
https://rapidapi.com/

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Silvery D. Fu et al.

Snicket: Query-driven distributed tracing. In Proc. ACM HotNets.
[41] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and

John Wilkes. 2016. Borg, Omega, and Kubernetes. Commun. ACM
(2016).

[42] Jingrong Chen, Yongji Wu, Shihan Lin, Yechen Xu, Xinhao Kong,
Thomas Anderson, Matthew Lentz, Xiaowei Yang, and Danyang Zhuo.
2023. Remote Procedure Call as a Managed System Service. In Proc.
USENIX NSDI.

[43] Audrey Cheng, Xiao Shi, Lu Pan, Anthony Simpson, Neil Wheaton,
Shilpa Lawande, Nathan Bronson, Peter Bailis, Natacha Crooks, and
Ion Stoica. 2021. RAMP-TAO: layering atomic transactions on Face-
book’s online TAO data store. Proc. VLDB Endowment 14, 12 (2021),
3014–3027.

[44] Silvery Fu and Sylvia Ratnasamy. 2021. dSpace: Composable Abstrac-
tions for Smart Spaces. In Proc. ACM SOSP.

[45] Silvery Fu, Hong Zhang, Sylvia Ratnasamy, and Ion Stoica. 2022. The
Internet of Things in a Laptop: Rapid Prototyping for IoT Applications
with Digibox. In Proc. ACM HotNets.

[46] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems. In
Proc. ACM ASPLOS.

[47] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. 2019. An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge systems. In
Proc. ACM ASPLOS.

[48] Shaddi Hasan et al. 2023. Building Flexible,{Low-Cost} Wireless
Access Networks With Magma. In Proc. USENIX NSDI.

[49] Carl Hewitt, Peter Bishop, and Richard Steiger. 1973. A Universal
Modular ACTOR Formalism for Artificial Intelligence. In Proc. IJCAI.

[50] Greg Leffler. 2022. {OpenTelemetry} and Observability: What, Why,
and Why Now? (2022).

[51] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping
Zhang, Yu Ding, Jian He, and Chengzhong Xu. 2021. Characterizing
microservice dependency and performance: Alibaba trace analysis. In
Proc. ACM SoCC.

[52] Zhihong Luo, Silvery Fu, Mark Theis, Shaddi Hasan, Sylvia Ratnasamy,
and Scott Shenker. 2021. Democratizing cellular access with CellBricks.
In Proc. ACM SIGCOMM.

[53] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads.. In Proc. USENIX NSDI.

[54] Amy Ousterhout, Steve McCanne, Henri Dubois-Ferriere, Silvery Fu,
Sylvia Ratnasamy, and Noah Treuhaft. 2021. Zed: leveraging data types
to process eclectic data. In Proc. CIDR.

[55] Aurojit Panda, Mooly Sagiv, and Scott Shenker. 2017. Verification in
the age of microservices. In Proc. ACM HotOS.

[56] Benjamin H Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chan-
dan Shanbhag. 2010. Dapper, a large-scale distributed systems tracing
infrastructure. (2010).

[57] Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L
Littman. 2014. Practical trigger-action programming in the smart home.
In Proc. SIGCHI Conference on Human Factors in Computing Systems.
803–812.

[58] Wen Zhang, Eric Sheng, Michael Chang, Aurojit Panda, Mooly Sagiv,
and Scott Shenker. 2022. Blockaid: Data Access Policy Enforcement
for Web Applications. In Proc. USENIX OSDI.

	Abstract
	1 Introduction
	2 Revisiting Service Composition
	3 Knactor Design
	3.1 The Rationale of the Knactor Pattern
	3.2 Knactor Framework
	3.3 Run-time Operation and Optimization

	4 Prototype and Preliminary Studies
	5 Discussion and Future Work
	References

