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Performance prediction is increasingly important!
● Optimization, capacity planning, SLO-aware scheduling 
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F(parameters) → performance
E.g., how many workers, size of input, machine configurations → JCT, query latency

https://opsani.com/resources/cloud-optimization/



Challenges 

● Accurate
○ precise predictions 

● Simple/easy-to-use
○ in-depth understanding of the 

systems not required

● General
○ works across a spectrum of 

workloads and applications

Can ML provide an accurate, 
general, and simple 

performance predictor?
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This paper: a systematic 
and broad study on 
performance prediction!ML for system perf. prediction? 

● Accurate
○ precise predictions 

● Simple/easy-to-use
○ in-depth understanding of the 

systems not required

● General
○ works across a spectrum of 

workloads and applications

Can ML provide an accurate, 
general, and simple 

performance predictor?



Start with the best-case scenario!

The Best-Case (BC) Test
● Given parameters P1, P2, P3, …, Pk, want to learn F(P) → Perf. (e.g. JCT)

- Dataset: data points of <P=X, JCT=Y>; split into training and testing sets

● ML assumptions:
- One-feature-at-a-time:  e.g., vary P2, keeping P1, P3, … Pk fixed
- Seen-configuration: e.g., points where P2=1GB appear in training and testing-sets

● Systems assumptions: 
- No-contention: dedicated EC2 instances, isolated experiments;
- Identical-inputs: same input data for a given input dataset size;
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ML for system perf. prediction? 



Applications and Models

ML models:

Nearest-neighbors, 
Linear-regression, 
Random forest, 
SVM, SVM-kernelized, 
Neural networks
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● Accuracy metric:
○ rMSRE
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Metrics and Predictors

● Oracle predictor → O-err

● BoM-err ≥ O-err

To obtain O-err:
● Allow Oracle to 

peek at both the 
error function and 
test data!

Yi: true value

f(Xi ): predicted value 

● ML predictors → Best-of-Model/BoM-err
○ rMSRE of the most accurate model 
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Best Case Test Results
 
● Accuracy metric:

- rMSRE

● ML predictors → BoM-err
○ rMSRE of the most accurate model 

● Oracle predictor → O-err

BoM-err ≥ O-err:
● ..a lower bound
● if O-err high, 

"impossible to 
accurately predict 
performance"!
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Best Case Test Results
 
● Accuracy metric:

- rMSRE

● ML predictors → BoM-err
○ rMSRE of the most accurate model 

● Oracle predictor → O-err

BoM-err ≥ O-err:
● ..a lower bound
● if O-err high, 

"impossible to 
accurately predict 
performance"!

Error < 5% for 90% 
of predictions! 

Error < 15% for 
~99% predictions! 



Best Case Test Results

Observations:

● Despite best-case assumptions, the BoM often fails to achieve high accuracy.

● Oracle errors (the lower bound) are high.

BoM-err: rMSRE from the 
most accurate model
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O-err: rMSRE from the Oracle



Best Case Test Results
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Observations:

● Despite best-case assumptions, the BoM often fails to achieve high accuracy.

● Oracle errors (the lower bound) are high.

BoM-err: rMSRE from the 
most accurate model

O-err: rMSRE from the OracleHigh Oracle error even under 
our best-case setup!

(Accurate ❌) 



Run BC test

start

Methodology
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Run BC test

start

O-err 
high?

Methodology
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E.g., Spark worker readiness

https://spark.apache.org/docs/latest/running-on-kubernetes.html

● Spark launches a 
job once at least 
80% of target 
workers are ready
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Root-causes Fix?



Fix?
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Root-causes



With system modifications

Before

After
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● For all applications, 
Oracle error is now 
well within 10%!

● Best-of-Model error 
likewise!
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All root-causes

● Trade-off between predictability and other design goals!
● E.g., disabling an optimization can lead to higher prediction accuracy but 

degraded performance 

Fixes
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All root-causes

● Trade-off between predictability and other design goals!
● E.g., disabling an optimization can lead to higher prediction accuracy but 

degraded performance 

Fixes

These "fixes" require in-depth 
understanding of the app. and 

reasoning about trade-offs!
(Easy-to-use ❌) 



Embrace variability: probabilistic predictions
● Idea: predicting a mixture distribution instead of a single value;
● Then, use the "modes" of each distribution as the "top-k" prediction value

○ E.g., identify the worst predicted performance that violates SLA

● ML: Mixture Density Networks and Probabilistic Random Forest

doi: https://doi.org/10.1371/journal.pcbi.1006869.g001 20

Significant decrease in BoM-err 
with top-3 (k=3) predictions! 

But top-k predictions may not be 
useful to all cases!

(General ❌) 

https://doi.org/10.1371/journal.pcbi.1006869.g001


Run BC test

start

O-err 
high?Y

Option to 
“fix” 

system 
variability?

Y

Reconfigure app

Methodology
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N for both:

Option to 
use “top k” 

preds.?

Y

Y
Switch to top-k 

models 

BoM-err 
high?

N

Y

fail

So far, best-case setup only! 
● one-feature-at-a-time
● seen-configuration
● no-contention
● identical-inputs



What if we go "beyond the best case"?
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● Relaxing the no-contention assumption:
○ use default/shared EC2 instances!

● Relaxing the identical-inputs assumption:
○ varied datasets (e.g., different random seeds in data generation)

● Relaxing the one-feature-at-a-time assumption:
○ vary all parameters!

● Relaxing the seen-configuration assumption:
○ configuration-to-predict is never seen during model training!

Run on modified 
systems with the 

fixes!
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What if we go "beyond the best case"?
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Prediction errors can remain high 
if the underlying performance 

trend is difficult to learn!
(General ❌)
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N

success

Run BBC test BoM-err 
high?

Pick model

fail

N

(Future Work)
- add features to 

characterize data inputs 
(if failed relaxation of 

identical-inputs) 

Y
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Conclusion: 
● Taken "out of the box", many apps exhibit a surprisingly high 

degree of irreducible error

● We can significantly improve the accuracy if we accept the loss 
of simplicity and/or generality:
○ modify applications
○ modify predictions
○ ..but they don't work in all cases 

● Need a more nuanced methodology for applying ML
26



27

Conclusion: 
● Taken "out of the box", many apps exhibit a surprisingly high 

degree of irreducible error

● We can significantly improve the accuracy if we accept the loss 
of simplicity and/or generality:
○ modify applications
○ modify predictions
○ ..but they don't work in all cases 

● Need a more nuanced methodology for applying ML

Can ML provide an accurate, 
general, and simple 

performance predictor?

No.

● Accurate
○ precise predictions 

● Simple/easy-to-use
○ in-depth understanding of the 

systems not required

● General
○ works across a spectrum of 

workloads and applications
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Thanks!
Datasets: https://s3.console.aws.amazon.com/s3/buckets/perfd-data 

Tools: https://github.com/perfd/perfd.git

Contact: silvery@eecs.berkeley.edu

https://s3.console.aws.
https://github.com/perfd/perfd.git

