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Performance prediction is increasingly important!

e Optimization, capacity planning, SLO-aware scheduling
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Cloud
Optimization

eeeeeee

https://opsani.com/resources/cloud-optimization/

F(parameters) — performance

E.g., how many workers, size of input, machine configurations — JCT, query latency



Challenges

e Accurate
o precise predictions s

Machine Learning for Systems
and
Systems for Machine Learning

e Simple/easy-to-use

Jeff Dean

o in-depth understanding of the -yt
Systems not reqUIred i Presenting the work of many people at Google
e General ~ Can ML provide an accurate,
o works across a spectrum of genera[, and simp[e

workloads and applications performa nce pred ictor?



ML for system perf. prediction?
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ABSTRACT
Users of cloud services are presented with a bewildering chaice of
VM types and the choice of VM can have significant implications

1 INTRODUCTION
As companies ofal sizes migrate to cloud environments, increas-
ingly diverse workloads are being run in the Cloud — each with

d cost. I this pap
problem of accurately and economically choosing the best VM for
a given workload and user goals. To address the problem of opti-
mal VM selection, we present PARIS, a datardriven system that

different p cost trade-offs 9], Recog-
nizing this diversity, cloud providers offer a wide range of Virtual
Machine (VM) types. For instance, at the time of writing, Ama-
20n 2], Google [7], and Azure [42) offered a combined total of over

uses anovel hybrid offine and online data collection and model P
framework to provide mini- paper vie address problem ufum‘mlrly
mal data colletion. PARIS is blet and the best VM for a given workload an

for diflrnt v i et e veling coss orawide e g Thi chl i it e of i3 gt on pnw
range of VM types . throughy davail-

‘When compared to sophisticated baselines, mdudmg co!.lsbonu\c
filering and alinear interpolation model using measured workload

abilty. Yt determining or even dcﬂmng gt depends
heavily on the users’ goels which may involve diverse, application-

Vit .
estimates of sance, For inst predic-

tionror by a factr of 4 o some workloadson both AWS and  For example, Figore  los the runimesand resling costsof
Anare. The increased. 2 45% reduction in avideo encoding task o several AWS VM types. A mmw

user cost while maintaining performance
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ser want
type (1 Torge) md paradoviallyend up not ust with poorper-
formance but also high total costs. Altematively, overprovisioning

 picking VM type (12 only

like c3. 2x0arge. Thus, o choose the ight VM for her performance
goals and budget,the user needs accurate performance estimates.

Recent attempts to help users sclect VM types have either fo-
cused on optimization technigues to eficiently search for the best
performing VM type [12], or extensive experimental evaluation to
‘model the performance cost trade-off [49). Simply optimizing for
the best VM type for a particular goal (as in CherryPick [12]) as-
sumes that this goal is fied; however,different users might prefer
different points along the performance-cost trade-off curve. For
example, a user might be willing to tolerate mild reductions in
performance for substantial cost savings. In such cases,the user
‘might want to know precisely how switching to anther VM type
affects performance and cost.

trade-

off, can be challenging. The published VM characterisics (eg.
and res) have hard.
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plications for any given workload [24, 39, 72]. Furthermore, the

performance often depends on workload characteristics that are

diffcult to specify [15, 28, 39]. Finally, variability in the choice of

host hardware, placement policies, and resource contention [59]
result variabilty

This paper: a systematic

Ernest: Efficient Performance Prediction for Large-Scale Advanced
Analytics

Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Rechi, Ion Stoica
University of California, Berkeley

Abstract

Recent workload trends indicate rapid growth in the
deployment of machine learning, genomics and scienific
workloads on cloud computing infrastructure. However,
efficiently running these applications on shared infras-
tructure is challenging and we find that choosing the right

i ficant! rfor-

of instances are crucial choices that determine the run-
ning time and thus indirectly the cost of running a given
job. Using common machine learning kemels we show
in §2.2 that choosing the right configuration can improve
performance by up to 1.9x at the same cost.

In this paper, we address the challenge of choosing
the configuration (o run large advanced analytics ap-
plications in ‘multi-tenant

‘mance and cost. The key to address the above chall
is having the ability to predict performance of applica-
tions under various resource configurations so that we
can automatically choose the optimal configuration.
Our insight s that a number of jobs have predictab

‘The choice of configuration depends on the user’s goals
which typically includes either minimizing the running
time given a budget or meeting a deadline while min-
imizing the cost. The key to address this challenge is

structure in terms of computation and
“Thus we can build performance models based on the be-
havior of the job on small samples of data and then pre-
dict its performance on larger datasets and cluster sizes
“To minimize the time and resources spent in building a
‘model, we use optimal experiment design, a statistical
technique that allows us to collect as few training points
as required. We have built Emest, a performance pre-
diction framework for large scale analytics and our eval-
uation on Amazon EC2 using several workloads shows
that our prediction error is low while having a training
overhead of less than 5% for long-running jobs;

1 Introduction

In the past decade we have seen a rapid growth of large-
scale advanced analytics that implement complex algo-
sithims in areas like distributed natural language process-
ing [24, 74], deep leaming for image recognition [34],
‘genome analysis [72, 61], astronomy [17] and parti-
cle acoelerator data processing [19]. These applications
differ from traditional analytics workloads (e.g., SQL
querics) in that they are not only data-intensive but also
computation-intensive, and typically run for a long time
(and hence are expensive). Along with new workloads,
we have seen widespread adoption of cloud computing
with large data sets being hosted [7, 1], and the emer-
‘gence of sophisticated analytics services, such as ma-
chine learning, being offered by cloud providers [9, 6].
With cloud computing environments such as Ama-
7on EC2, users typically have a large number of choices
in terms of the instance types and number of instances
they can run their jobs on. Not surprisingly, the amount
of memory per core, storage media, and the number

developing framework that can
accurately predict the running time on a specified hard-
ware configuration, given a job and its input.

‘One approach to address this challenge is to predict the
performance of a job based on monitoring the job’s pre-
vious runs [39, 44]. While simple, lhmapproachassumes
the job runs repeatedly on the same or “simila
However, this assumption does not always hold First,
even when a job runs periodically it typically runs on
data sets that can be widely different in both size and
content. For example, a prediction algorithm may run on
data sets corresponding to different days or time granu-
larities. Second, workloads such as interactive machine
learning [9, 55] and parameter tuning generate unique
jobs for which we have little or no relevant history. An-
other approach to predict job performance is to build a
detailed parametric model for the job. Along these lines,
several techniques have been recently proposed in the
context of MapReduce-like frameworks [77, 52]. These
techniques have been aided by the inherent simplicity of
the two-stage MapReduce model. However, the recent
increase in the popularity of more complex parallel com-
‘putation engines such as Dryad [51] and Spark [83] make
these parametric techniques much more difficult o apply.

Tn this paper, we propose a new approach that can ac-
curately predict the performance of a given anlytics job.
‘The main idea is to run a set of instances of the entire
job on samples of the input, and use the data from these
raining runs to create a performance model. This ap-
proach has low overhead, as in general it takes much less
time and resources to run the training jobs than running
the job itself. Despite the factthat this s a black-box ap-
proach (i, requires no knowledge about the internals of

and broad study on
performance prediction!

Selecta: H Cloud Storage C ion for Data Analytics
Ana Klimovic Heiner Litz Christos Kozyrakis
Stanford University UC Santa Cruz Stanford University

Abstract

‘Data analyties are an important class of data-intensive
workloads on public cloud services. However, selecting
the right compute and storage configuration for these ap-
plications is difficult as the space of available options is
large and the interactions between options are complex.
Moreover, the different data streams accessed by analyt-
ies workloads have distinct characteristics that may be
better served by different types of storage devices.

We present Selecta, a tool that recommends near-
optimal configurations of cloud compute and storage re-
sources for data analytics workloads. Selecta uses latent
factor collaborative filtering to predict how an applica-
tion will perform across different configurations, based
on sparse data collected by profiling training workloads.
We evaluate Selecta with over one hundred Spark SQL
and ML applications, showing that Selecta chooses a
near-optimal performance configuration (within 10% of
optimal) with 94% probability and a near-optimal cost
configuration with 80% probability. We also use Se-
lecta to draw significant insights about cloud storage
systems, including the performance-cost efficiency of
NVMe Flach devices, the need fo cloud strage i

and b
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Figure 1: Performance of three applications on cight
13.xL instances with different storage configurations.

‘The choice of storage is often essential, particularly
for cloud deployments of data-intensive analytics. Cloud
vendors offer a wide variety of storage options including
object, file and block storage. Block storage can consist
of hard disks (HDD), solid-state drives (SSD), or high
bandwidth, low-latency NVMe Flash devices (NVMe).
The devices may be local (1) to the cloud instances run-
ning the application or remote (). These options alone
lead to storage configuration options that can differ by
orders of magnitude in terms of throughput, latency, and
cost per bit. The cloud storage landscape is only becom-

support for
and the motivation for end-to-end slomge upumuauons

1 Introduction

‘The public cloud market is experiencing unprecedented
‘growth, as companies move their workloads onto plat-
forms such as Amazon AWS, Google Cloud Platform
and Microsoft Azure. Tn addition to offering high elastic-
ity, public clouds promise to reduce the total cost of own-
ership as resources can be shared among tenants. How-
ever, achieving performance and cost efficiency requires
choosing a suitable configuration for each given applica-
tion. Unfortunately, the large number of instance types
and configuration options available make selecting the
right resources for an application difficult.

ing more divers s emerping echnloges bsed on 3D
X-point b ilable [35, 16].

Selectng the righ cloud sorage onfiguration s crit
ical for both performance and cost. Consider the exam-
ple of a Spark SQL equijoin query on two 128 GB ta-
bles [53]. We find the query takes 8.7x longer when
instances in an 8-node EC? cluster access r-HDD com-
pared to -NVMe storage. This s in contrast to a recent
study, conducted with a prior version of Spark, which
found that faster storage can only improve the median job
execution time by at most 19% [50]. The performance
benefits of I-NVMe lead to 8 lower execution cost for
this query, even though NVMe storage has higher cost
per unit fime. 1f we also consider a few options for the
number of cores and memory per instance, the perfor-
mance gap between the best and worst performing VM-
storage configurations is over 30x.

USENIX Association

2018 USENIX Annual Technical Conference 759



ML for system perf. prediction?

Start with the best-case scenario!

The Best-Case (BC) Test
e Given parameters P, P, P,, ..., P, want to learn F(P) — Perf. (e.g. JCT)
- Dataset: data points of <P=X, JCT=Y>; split into training and testing sets

e ML assumptions:

- One-feature-at-a-time: e.g., vary P2, keeping P1, P3, Pk fixed

- Seen-configuration: e.g., points where P,=1GB appear in training and testing-sets
e Systems assumptions:

- No-contention: dedicated EC2 instances, isolated experiments;

- Identical-inputs: same input data for a given input dataset size;



Applications and Models
i S~

Framework

Memcached [12]

Nginx [9]
o 5] ML models:

Go-fasthttp [7]

Nearest-neighbors,
Linear-regression,

Spark [3] Random forest,

SVM, SVM-kernelized,
Neural networks

TensorFlow [17],
Kubernetes [11]




Metrics and Predictors

o rMSRE

e Accuracy metric: L& (Y- (X))’
;l_zf 7 )

e ML predictors — Best-of-Model/BoM-err
o rMSRE of the most accurate model

e Oracle predictor — O-err

foracle (X) —
8(a,b) =

(2 252/ (z, 2559,

1 if a 1s equal to b, and O otherwise.

Yl.: true value

J(X.): predicted value

To obtain O-err:

Allow Oracle to
peek at both the
error function and
test data!

BoM-err = O-err



Best Case Test Results

1.0

0.8

CDF

0.4
—— App X

0.2 1

0.01

0 10 20 30 40 50 60
rMSRE (%)



Best Case Test Results

20 30 40 50 60
rMSRE (%)

10

1.0 i i Error < 5% for 90%
0.8 : : of predictions!

u 0.6 E E Error < 15% for

0 0.4 i i ~99% predictions!
0.2 i i
ol L



Best Case Test Results
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(b) CDF of BoM-err in the BC test (a) CDF of O-err in the BC test

Observations:

e Despite best-case assumptions, the BoM often fails to achieve high accuracy.

e Oracle errors (the lower bound) are high.
10



Best Case Test Results

High Oracle error even under
our best-case setup!

(Accurate )X)

11



Methodology

start

Run BC test

12



Methodology

start

Run BC test

w Applications
Impacted
Spark’s “start when 80% of workers Terasort
are ready” optimization
Multi-mode optimization in JVM LR1
Garbage Collector
Non-determinism in Spark sched. PageRank
HTTP redirects and DNS caching in KMeans, LR2,
S3’s name resolution FPGrowth, ALS
Imperfect load-balancing at high TensorFlow
load serving
Variability in implementations of memcached,
Cloud APIs (EC2) Nginx

13



E.g., Spark worker readiness

kubernetes cluster

apiserver

scheduler

o © ©
0o 0o 0o
o) Ko,

https://spark.apache.org/docs/latest/running-on-kubernetes.html

Spark launches a
job once at least
80% of target
workers are ready

14



Root-causes

W Applications
Impacted
Spark’s “start when 80% of workers Terasort
are ready” optimization
Multi-mode optimization in JVM LR1
Garbage Collector
Non-determinism in Spark sched. PageRank
HTTP redirects and DNS caching in KMeans, LR2,
S3’s name resolution FPGrowth, ALS
Imperfect load-balancing at high TensorFlow
load serving
Variability in implementations of memcached,
Cloud APIs (EC2) Nginx

Fix?

15



Root-causes

Fix?

W Applications Modification
Impacted
Spark’s “start when 80% of workers Terasort Disable optimization
are ready” optimization
Multi-mode optimization in JVM LR1 Avoid triggering, or disable,
Garbage Collector optimization
Non-determinism in Spark sched. PageRank Use deterministic data structure
HTTP redirects and DNS caching in KMeans, LR2, Client-side caching of HTTP
S3’s name resolution FPGrowth, ALS redirects (OR always redirect)
Imperfect load-balancing at high TensorFlow Modified load-balancing policy to
load serving always favor local workers
Variability in implementations of memcached, Use AWS placement APIs / include
Cloud APIs (EC2) Nginx inter-node RTTs as ML feature

16



With system modifications

Ir2
Irl — tfs
sort — nginx
kmeans = influxdb
fpgrowth =—— pagerank
word2vec ==---memcached

go-fasthttp
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rMSRE (%)

(a) CDF of O-errin the BC test
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(a) CDF of O-err in the BC test

Ir2
""" Irl — tfs
sort = nginx
kmeans = influxdb
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go-fasthttp
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(b) CDF of BoM-e~r in the BC test

word2vec ===:memcached
go-fasthttp

1
1
1 = als Ir2
Irl — tfS
l sort — NGINX
1 kmeans == influxdb
1 fpgrowth —— pagerank
1
1
1}

0 ]IO 20 30 40 50 60
rMSRE (%)

(b) CDF of BoM-err in the BC test

Before

After

For all applications,
Oracle error is now
well within 10%!

Best-of-Model error
likewise!

17



All root-causes

Fixes

e —

Root Cause Applications Modification Qadi(p
Impacted
Spark’s “start when 80% of workers Terasort Disable optimization Decreased resilience to stragglers
are ready” optimization and worker failure
Multi-mode optimization in JVM LR1 Avoid triggering, or disable, Slower garbage collection
Garbage Collector optimization
Non-determinism in Spark sched. PageRank Use deterministic data structure None
HTTP redirects and DNS caching in KMeans, LR2, Client-side caching of HTTP Decreased flexibility® (OR slower
S3’s name resolution FPGrowth, ALS redirects (OR always redirect) name resolutions)
Imperfect load-balancing at high TensorFlow Modified load-balancing policy to Load imbalance when each server
load serving always favor local workers has different numbers of workers
Variability in implementations of memcached, Use AWS placement APIs / include Cloud APIs expose more
Cloud APIs (EC2) Nginx inter-node RTTs as ML feature information (less flexibility)

e Trade-off between predictability and other design goals!
e E.g., disabling an optimization can lead to higher prediction accuracy but
degraded performance

18




All root-causes Fixes

These "fixes" require in-depth
understanding of the app. and
reasoning about trade-offs!

(Easy-to-use X)




Embrace variability: probabilistic predictions

Significant decrease in BoM-err
with top-3 (k=3) predictions!

But top-k predictions may not be
useful to all cases!

(General X)



https://doi.org/10.1371/journal.pcbi.1006869.g001

Methodology

— Run BC test fail

Reconfigure app
A

BoM-err

high? So far, best-case setup only!

Y

e one-feature-at-a-time
Option to e seen-configuration
sygtxem e no-contention
variability? e identical-inputs

Option to
use “top k”
preds.?

Switch to top-k
models

N for both:

fail 9



What if we go "beyond the best case"?

e Relaxing the one-feature-at-a-time assumption:
o vary all parameters!

e Relaxing the seen-configuration assumption:
o configuration-to-predict is never seen during model training!

e Relaxing the no-contention assumption:
o use default/shared EC2 instances!

e Relaxing the identical-inputs assumption:
o varied datasets (e.g., different random seeds in data generation)

Run on modified
systems with the
fixes!

22



What if we go "beyond the best case"?

Prediction errors can remain high
If the underlying performance
trend is difficult to learn!

(General X)




Methodology Blueprint

start
Run BC test

Reconfigure app
A

Y

Option to
“fiX”
system
variability?

Option to

fail

BoM-err
high?

success

Pick model

Run BBC test

[}

use “top k”

Switch to top-k
models

preds.?

N for both:
fail

(Future Work)

- add features to

characterize data inputs ~

(if failed relaxation of
identical-inputs)

fail

24



Methodology Blueprint

start
Run BC test

Reconfigure app
A

Y

Option to
“fiX”
system
variability?

Option to

fail

BoM-err
high?

success

Pick model

Run BBC test

[}

use “top k”

Switch to top-k
models

preds.?

N for both:
fail

(Future Work)

- add features to

characterize data inputs ~

(if failed relaxation of
identical-inputs)

fail

25



Conclusion:

e Taken "out of the box", many apps exhibit a surprisingly high
degree of irreducible error

e We can significantly improve the accuracy if we accept the loss
of simplicity and/or generality:
o modify applications
o modify predictions
o ..buttheydon'tworkin all cases

e Need a more nuanced methodology for applying ML

26



Conclusion:

e Accurate
o precise predictions

e Simple/easy-to-use
o in-depth understanding of the
systems not required

e (General

o works across a spectrum of
workloads and applications

Can ML provide an accurate,
general, and simple
performance predictor?

NoO.



Thanks!

Datasets: https://s3.console.aws.amazon.com/s3/buckets/perfd-data

Tools: https://aithub.com/perfd/perfd.qit

Contact: silvery@eecs.berkeley.edu

28
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https://github.com/perfd/perfd.git

